In-Situ Remediation (ISR-MT3DMSTM) Contact Time Distribution

Introduction

- The success of injection remedies like ISCO depends on maximizing the contact time between the injected reagent, and the contaminant.
- Most models do not calculate contact time as a metric to help with remedy evaluation.
- ISR-MT3DMSTM incorporates a contact time "calculator", which calculates the contact time of an injected reagent in each grid cell, over a specified period of time.
- The distribution of contact time may then be plotted on a figure, to see how this metric is distributed across a source zone. The goal of a remedy may be to balance the distribution of contact time throughout the source zone, so that there is a balanced cleanup of all areas within this zone.

Sample Model Construction

Flow Model Input

- K = 100 m/day
- Gradient = 0.003
- Porosity = 0.2
- Calculated velocity ~ 550 m/year
- Recharge = 8 inches per year

Transport Model Input

- Injected reactant only
 - Did not simulate contaminant in source zone
- Longitudinal dispersivity = 2 m
- No sorption
- Oxidant half-life = 25 days
- Injected concentration = 1 (normalized)

Model Domain

Close-up of source zone

Groundwater Flow

Domain Cross-Section

Contact Time Analysis

Contact Time Concept

- Defined several target concentrations for oxidant in source area
 - E.g. 1% or 0.1% of injected concentration
 - If injected solution has permanganate concentration = 20 g/L, then target concentrations are 200 and 20 mg/L of permanganate using 1% and 0.1% thresholds

Contact Time Concept

- Contact Time = total time during simulation that permanganate exceeds the target concentration in a model grid cell
- Contouring contact time provides a measure of efficiency in oxidant distribution in the source area over entire simulation
- Evaluating the % of source area with a minimum contact time (e.g. 1 day) is another summary measure of efficiency

Contact Time Distribution

- Next series of slides shows the contact time distribution for a simple one-well scenario
 - Oxidant degradation was not modeled for this simple demonstration
 - Duration of model simulation is 30 days

Step 1. Study PERM concentration

Simulation Time = 1 day

PERM conc. over time

Injection duration = 1 day; Volume injected = 2000 L

Log concentration of -2: C=0.01, or 1% of injected concentration

Findings

- Contaminat degradation, which is based on oxidant concentrations, varies over time and space
- Difficult to get a simple measure of remediation efficiency based on the distribution of reactant concentrations

Contact Time Calculation

- Define oxidant concentration "threshold"
 - E.g. one rule-of-thumb is to have at least 1% of injected concentration over entire source zone for a minimum period of time
 - Another reference...need a minimum permanganate concentration to facilitate solvent degradation, based on competition with native organic matter

Contact Time Calculation

- For this simple analysis, several reactant concentration thresholds were defined:
 - C = 10% of injected concentration
 - C = 1% of injected concentration
 - C = 0.1% of injected concentration

Contact Time: Reactant C > 0.1%

Contact Time: Reactant C > 1%

Contact Time: Reactant C > 10%

Findings

- Most efficient treatment zone for C>0.1% is downgradient of source zone
- Most efficient treatment zone for C>10% is upgradient of source zone
- Therefore, intensity of the concentration threshold (e.g. 0.1%, 1%, or 10%) for contact time will influence decisions on injection rate and well placement

Findings

- For one injection well, there is a significant difference in remediation efficiency in source zone
 - Greatest efficiency directly downgradient from injection well
 - Decreasing efficiency as move away from centreline of injected reactant plume

Contact Time Frequency for Model Grid Cells in Source Zone

Contact Time Distribution in Source Zone

Cumulative Distribution

Contact Time Evaluation

Multiple Injection Well Scenarios

Multiple Well Scenarios

- Fixed Injection Volume: 2000 L
- Injection duration: 1 day
- Contact time calculated at 30 days of simulation
- Number of injection wells (IW) varies
 - From 1 to 6 IW's

Injected Volume: 2000 L

Cumulative Frequency: Reactant C > 1%

Cumulative Frequency: Reactant C > 1%

• FINDINGS:

- 1 well and 2 well have significantly reduced performance based on contact time and fixed solution volume injected
- 4 and 5 wells had similar/best performance when trying to achieve the high threshold of C>1% of reactant solution concentration
- 6 wells results in less efficient performance than 4 or 5 wells assuming fixed solution volume because of dispersion

Cumulative Frequency: Reactant C > 0.1%

Cumulative Frequency: Reactant C > 0.1%

• FINDINGS:

• If target threshold concentration is lower intensity (0.1%), then 2 or 3 injection wells would suffice for the fixed solution volume

Goal

- Compare the contact time distribution for two alternatives – injection of fixed solution volume:
 - One event per month; or
 - One event per week.

Injection Scenarios

- Run T-121:
 - Injection of 4000 L in 6 hours at start of month
- Run T-122:
 - Injection of 1000 L in 6 hours on weekly basis
 - Same total volume injected as Run T-121
- Both simulations conducted for 30-day period

Contact Time for C > 1%

Contact Time for C > 0.1%

Contact Time Distribution

Monthly Injection

Weekly Injection

Findings

- % of source zone with more than 1 day contact time at threshold concentration:
 - C > 1%:
 - Monthly Injections: 94% of source zone
 - Weekly Injections: 11% of source zone
 - C > 0.1%:
 - Monthly and weekly injections: 100%
 - Average contact time for monthly injection is 10 days less than weekly injection

Findings

- If target is higher threshold concentration:
 - Less frequent injections are better than more frequent (assuming same monthly solution volume)
- If target is lower threshold concentration:
 - More frequent injections result in higher contact times, but need to weigh benefit vs additional labor cost

Flux Analysis

Flux Analysis

- Modified MT3DMS to calculate flux across userdefined region (e.g. source area)
 - Advective, dispersive, and total flux
 - Oxidant flux out of source area measure of efficiency
 - Contaminant flux evaluate contaminant flux reduction over time for different design alternatives

Flux Analysis – Monthly Injection

Total Mass Injected = 80 kg

63% leaving Source area

Advective flux

Flux Analysis – Weekly Injection

Total Mass Injected = 80 kg

50% leaving Source area

Advective flux

Permanganate Mass Leaving Source Area

Correlation Between Contact Time and NAPL Depletion

Goal

- To demonstrate that contact time of injected reagant is proportional to the mass of DNAPL that will be depleted for a remedy
 - i.e. as contact time increases for a remedy, the corresponding depletion of DNAPL mass will also increase
- If proven, we don't have to simulate contaminants/DNAPL dissolution (higher uncertainty)

Approach

- Simplified model for now to assess degree of correlation
 - Permanganate injection
 - Rate-limited TCE DNAPL dissolution
 - TCE degradation rate based on permangate concentration

Approach

- Calculate average contact time of oxidant in source zone when changing:
 - Number of injection wells
 - Permanganate (KMnO4) degradation rate
 - Injected solution concentration of KMnO4
 - TCE degradation rate (which should not change contact time but will increase DNAPL dissolution rate)

Approach

- Calculated average contact time in source zone over 30 day period between injections
- Two concentration thresholds:
 - 20 and 200 mg/L KMnO4

NAPL Mass Depletion

- Compare mass depleted for remedy to mass depleted under no action scenario (i.e. natural dissolution)
 - SRox = remedy mass depletion
 no-action mass depletion

SRox >= 1

Srox = ISCO dissolution enhancement factor

Transmissivity vs. NAPL Depletion

Findings

- Results match Petri et al. (2008)
 - high velocity systems less impacted by ISCO because of higher natural dissolution rate; and
 - 2. Increasing permanganate concentration increased rate of DNAPL depletion.

 Indicates modeling of NAPL dissolution represents trends observed in lab experiments conducted by Petri et al.

Vary No. of Injection Wells (IW)

Conclusions

- Parameters that result in higher contact time also result in higher DNAPL depletion rate for site conditions
- Contact time is reasonable surrogate for evaluating relative influence of design parameters on DNAPL flushing rate

